Simple preparation of fused pyrrolo[2,3-b]pyrrolidinones and pyrrolo[2,3-c]pyridazinones ${ }^{1}$

Yoshinari \mathbf{O} kamoto, Y umiko K aneda, Tetsuo Yamasaki, Tadashi \mathbf{O} kawara* and M itsuru Furukawa

Faculty of P harmaceutical Sciences, K umamoto University, O e-hon-machi, K umamoto 862, J apan

Abstract

4-M ethyl-4-(dimethoxymethyl)pyrans $4 \mathrm{~b}, 4 \mathrm{c}$ and 15 , prepared from cyclohexane-1,3-diones 1 or 4-hydroxycoumarin 14, pyruvaldehyde dimethyl acetal 2 b and malononitrile 3 , are subjected to hydrolysis with HCl to give fused furofuranones 5 and 16 , which are treated with amines or hydrazines to give fused pyrrolopyrrolidinones 9 and 18 and pyrrolopyridazinones 12.

Introduction

N aturally occurring (-)-physostigmine and its analogues having pyrrolo[2,3-b]pyrrolidine as a main structural component have attracted much attention because some of them are inhibitors of acetylcholinesterase ${ }^{2}$ and are medically used to treat glaucoma and myasthenia gravis. ${ }^{3} \mathrm{M}$ ore importantly, they are candidate agents for the treatment of Alzheimer's disease. ${ }^{4}$ Consequently a number of strategies ${ }^{5}$ for the synthesis of these and related structures have been reported. However, several steps are required in these methods. Recently, A bdel-L atif et al. reported the preparation of fused pyran derivative 4a from cyclohexane-1,3-dione 1a, acetone 2 a and malononitrile (Scheme 1). ${ }^{6}$ In connection with our work ${ }^{7}$ on simple preparations of saturated polyheterocycles using dicarbonyl compounds, we attempted to apply this approach to the preparation of pyrrolopyrrolidine derivatives by replacing acetone 2a with pyruvaldehyde dimethyl acetal $\mathbf{2 b}$. Herein we report a simple and unique preparation of pyrrolopyrrolidinone and pyrrolopyridazinone systems.

1a $\mathrm{R}=\mathrm{H}$
1b $\mathrm{R}=\mathrm{CH}_{3}$
2a $\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{CH}_{3}$ 2b $\mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{R}^{\prime \prime}=\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}$

4a $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{CH}_{3}$ 4b $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{R}^{\prime \prime}=\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}$ 4c $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{R}^{\prime \prime}=\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}$
Scheme 1 Reagents: piperidine, benzene

Results and discussion

A solution of a dione $\mathbf{1}$, ketone $\mathbf{2 b}$, and nitrile $\mathbf{3}$ in benzene was heated under reflux in the presence of piperidine to give 4-methyl-4-(dimethoxymethyl)pyrans $\mathbf{4 b}$ and $\mathbf{4 c}$ in yields of 64 and 85%, respectively (Scheme 1). The structure of product 4 c was based on a characteristic acetal methine carbon at δ_{c} 108.76 and a C- 3 quaternary carbon at $\delta_{\mathrm{c}} 58.27$ in the ${ }^{13} \mathrm{C}$ N M R spectrum and a molecular ion peak at $\mathrm{m} / \mathrm{z} 306$ in the mass spectrum. Compounds $\mathbf{4 b}$ and $\mathbf{4 c}$ were hydrolysed with 2 m HCl to
afford the fused furo $[2,3-\mathrm{b}]$ furanones $\mathbf{5 a}$ and $\mathbf{5 b}$ in 62 and 64% yield (Scheme 2). The structure of compound $\mathbf{5 b}$ was deter-

Scheme 2 Reagent: 2 M HCl
mined as follows: the ${ }^{1} \mathrm{H} N M R$ spectrum showed the acetal methine proton at $\delta 6.23$ and the ${ }^{13} \mathrm{C}$ N M R spectrum indicated the acetal methine carbon at $\delta_{\mathrm{c}} 111.97$, with three methylene carbons at $\delta_{\mathrm{c}} 36.15,37.83$ and 50.64 , and four quaternary carbons at $\delta_{c} 33.92,47.92,116.42$ and 173.11 , respectively. The mass spectrum showed a molecular ion at $\mathrm{m} / \mathrm{z} 236$. The IR spectrum exhibited carbonyl absorptions at 1650 and 1790 cm^{-1}.
A possible mechanism for the formation of furofuranones 5 from pyrans $\mathbf{4}$ was deduced as follows: acid-catalysed hydrolysis of the acetal and ring opening of substrates $\mathbf{4}$ give the intermediate 6, which is then recyclized to the hemiacetal 7. Subsequently, compounds 7 undergo recyclization and decarboxylation to give products 5 (Scheme3).

Compounds $\mathbf{5}$ were easily converted to the fused pyrrolopyrrolidinones 9 in $48-53 \%$ yield by heating with primary amines in EtOH or water (Scheme 4). In the case of benzylamine, one mole equivalent of benzylamine reacted with compound $\mathbf{5 b}$ to give the furopyrrolidinone 8a and the pyrrolopyrrolidinone 9a in 46 and 12% yield, respectively. On treatment of compound $\mathbf{5 b}$ with two mole equivalents of benzylamine, products 8a and 9a

9a $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{Bn}$
9c $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{H}$
9d $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CH}_{3}$

Scheme 4 Reagents: R'N H2, EtOH or water

were produced in 3 and 60% yield. These compounds were assigned by mass and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NM R spectroscopy.

Reaction of compounds 5 with one mole equivalent of methylhydrazine in EtOH gave the furopyridazinones 10a and 10b in 68 and 64% yield. Regioisomer 11 was also a possible product, but was disregarded because of the observed spin coupling between the amine and methine protons (J 1.98 Hz). When compounds 5 were treated with two mole equivalents of methyl- or phenyl-hydrazine, the pyrrolopyridazinones $\mathbf{1 2}$ were produced in $52-68 \%$ yield (Scheme 5).

12a $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CH}_{3}$
12b $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{H}$
12c $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CH}_{3}$ 12d $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{Ph}$

13

10b $\mathrm{R}=\mathrm{CH}_{3}$

11

Scheme 5 Reagents: i, 2 equiv. R'NHNH ${ }^{\prime}$, EtOH; ii, 1 equiv. $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$, EtOH

A nother plausible structure (13) was disregarded because the methyl protons at $\delta 2.49$ were seen to undergo spin coupling to the amine proton (J 5.61 Hz) in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 12c. The spectral data strongly supported the assigned structures. Compound 10b was readily converted to the pyrrolopyridazinone 12c by treatment with methylhydrazine in 67% yield.

As an application of this approach, we next examined the reaction involving 4 -hydroxycoumarin 14. Thus, treatment of compound $\mathbf{1 4}$ with ketone $\mathbf{2 b}$ and nitrile $\mathbf{3}$ gave the pyranopyran 15 in 92% yield, which was subjected to hydrolysis with HCl to give the furofuranone 16 in 77\% yield (Scheme 6). Treatment of lactone $\mathbf{1 6}$ with aq. ammonia in a sealed tube afforded the

15

16

17
Scheme 6 Reagents: i, 2b, 3, benzene; ii, 2 м HCl; iii, $\mathrm{NH}_{4} \mathrm{OH}$; iv, aq. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
imino compound 17 in 63% yield after ring opening and decarboxylation of the ensuing β-carboxyenamine (Scheme 6). The structure of product 17 was determined as follows: the ${ }^{1} \mathrm{H}$ NMR spectrum showed the hydroxy group proton of the phenol moiety at $\delta 13.26$ and the ${ }^{13} \mathrm{C}$ N M R spectrum indicated two methylene carbons at $\delta_{\mathrm{c}} 43.87$ and 48.08 , respectively. The mass spectrum exhibited a molecular ion at $\mathrm{m} / \mathrm{z} 230$. The IR spectrum showed carbonyl absorptions at $1690 \mathrm{~cm}^{-1}$. Compound 16 was also heated with methylamine to give the $4-(\mathrm{N}-$ methylcarbamoyl)pyrrolopyrrolidinone 18 in 32% yield.
Reduction of pyrrolopyrrolidinones to pyrrolopyrrolidines has already been achieved by M arino et al. ${ }^{8} \mathrm{~A}$ short approach to pyrrolopyrrolidinones using three components has now been established. Conversion of these compounds to related pyrrolopyrrolidine derivatives is being investigated.

Experimental

Mps were determined on a Yanagimoto micromelting point apparatus and are uncorrected. IR spectra were recorded with a JASCO IR A-100 grating IR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured with a JEOL JNM-EX 270 spectrophotometer using tetramethylsilane as internal standard. j Values are given in $\mathrm{Hz} . \mathrm{M}$ ass spectra were obtained with a JEOL JM S-DX 303 mass spectrometer.

5,6,7,8-Tetrahydro-7,7-dialkyl-2-amino-3-cyano-4-methyl-4-(dimethoxymethyl)-5-oxo-4H -benzo[b]pyran 4b and 4c

A solution of the cyclohexanedione 16 (10 mmol), pyruvaldehyde dimethyl acetal $\mathbf{2 b}(1.21 \mathrm{ml}, 10 \mathrm{mmol})$, malononitrile (0.63 $\mathrm{ml}, 10 \mathrm{mmol}$) and piperidine ($0.49 \mathrm{ml}, 5 \mathrm{mmol}$) in benzene (50 ml) was refluxed for 3 h using a Dean-Stark apparatus. The precipitated solid was collected, washed with EtOH , and recrystallized from EtOH.

Compound 4b: yield $1.78 \mathrm{~g}(64 \%)$; mp 196-197 ${ }^{\circ} \mathrm{C}$ (Found: C, 60.21; H, 6.52; $\mathrm{N}, 9.92 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $60.42 ; \mathrm{H}, 6.52$; $\mathrm{N}, 10.07 \%) ; v_{\max } / \mathrm{cm}^{-1} 2200(\mathrm{CN})$ and $1680(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.74-2.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.12-2.63(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \times 2\right), 3.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.47(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $6.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right) ; \delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 22.23$ and $57.46\left(\mathrm{CH}_{3}\right)$, 19.83, 27.03 and $37.99\left(\mathrm{CH}_{2}\right), 108.63$ (CH), 39.99, 58.23, 114.51, 119.76, 158.81, 164.76 and 197.25 (C); m/z 278 (${ }^{+}$).

Compound 4c: yield 2.60 g (85%); mp $230-231^{\circ} \mathrm{C}$ (Found: C , 62.50; $\mathrm{H}, 7.37$; $\mathrm{N}, 8.83 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 62.73 ; \mathrm{H}, 7.24$; $\mathrm{N}, 9.14 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 2200(\mathrm{CN})$ and $1670(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.09(1$ H, d, J 15.18, CH H) , 2.24 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.82$, CH H), 2.34 ($1 \mathrm{H}, \mathrm{d}$, J $15.18, \mathrm{CHH}), 2.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.82, \mathrm{CHH}), 3.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.51(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $6.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$; $\delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 22.21,25.90,28.44,56.58$ and $58.41\left(\mathrm{CH}_{3}\right), 40.36$ and $51.72\left(\mathrm{CH}_{2}\right), 108.76(\mathrm{CH}), 31.51,39.85,58.27,113.67$, 119.74, 158.86, 162.77 and 197.15 (C); m/z 306 (${ }^{+}$).

2,3,3a,4,5,6,7,8a-0 ctahydro-6,6-dialkyl-3a-methyl-2,4-dioxo-benzo[b]furo[3,2-d]furan 5a and 5b

A suspension of a pyran $4(2 \mathrm{mmol})$ in $2 \mathrm{~m} \mathrm{HCl}(20 \mathrm{ml})$ was refluxed for 12 h . The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 25 \mathrm{ml})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with water (20 ml), dried over $\mathrm{M}_{\mathrm{gSO}}^{4}$ and evaporated under reduced pressure The resulting residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}=50: 1\right)$.

Compound 5a: yield $2.60 \mathrm{~g}(62 \%)$; mp $134-135^{\circ} \mathrm{C}$ (Found: C, 63.42; $\mathrm{H}, 5.90 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{C}, 63.45 ; \mathrm{H}, 5.81 \%$); $v_{\text {max }} /$ $\mathrm{cm}^{-1} 1790$ and $1640(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.03-$ $2.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.33-2.39\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.51-2.55(2 \mathrm{H}, \mathrm{m}$, CH_{2}), $2.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.48, \mathrm{CHH}), 3.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.48, \mathrm{CHH})$ and $5.96(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 21.86\left(\mathrm{CH}_{3}\right), 38.23,36.69$, 23.25 and $21.25\left(\mathrm{CH}_{2}\right), 112.14(\mathrm{CH}), 48.29,118.04,173.51$, 174.61 and 194.52 (C); m/z $208\left(\mathrm{M}^{+}\right)$.

Compound 5b: yield 2.60 g (64%); mp $85-87^{\circ} \mathrm{C}$ (Found: C, 65.89; $\mathrm{H}, 7.05 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\mathrm{C}, 66.09 ; \mathrm{H}, 6.83 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1790 and $1650(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.03$ (3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.17, \mathrm{CH} H), 2.25$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.17, \mathrm{CHH}$), 2.37 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.14, \mathrm{CH} H$), 2.48 (1 H , d, J 18.14, CHH), 2.76 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.14, \mathrm{CH}$), 2.84 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 18.14, CHH) and $6.23(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$; $\delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 20.91,27.25$ and $28.25\left(\mathrm{CH}_{3}\right), 36.15,37.83$ and $50.64\left(\mathrm{CH}_{2}\right), 111.97(\mathrm{CH})$, $33.92,47.92,116.42,173.11,173.78$ and 193.45 (C); m/z 236 $\left(\mathrm{M}^{+}\right)$.

Reaction of furobenzofuran 5b with benzylamine

A solution of compound $\mathbf{5 b}$ (2 mmol) and benzylamine (2 mmol) in EtOH (10 ml) was heated under reflux for 12 h . The solvent was evaporated off under reduced pressure. The residue was purified by flash column chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\mathrm{MeOH}=20: 1$).

2,3,3a,4,5,6,7,8a-0 ctahydro-1-benzyl-3a,6,6-trimethyl-2,4-

dioxo-1H -benzo[4,5]furo[2,3-b]pyrrole 8a. Y ield 0.3 g (46\%); mp 153-154 ${ }^{\circ} \mathrm{C}$ (Found: C, 74.06 ; $\mathrm{H}, 7.17 ; \mathrm{N}, 4.41 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires C, 73.82; H, 7.12; N, 4.30\%); $v_{\text {max }} / \mathrm{cm}^{-1} 1680$ and 1640 $(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.99\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \times 2\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.82, \mathrm{CHH}), 2.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 2.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 17.82, CHH), 2.42 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.15, \mathrm{CH}$ H), 2.87 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.15$, CHH), 4.10 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.85, \mathrm{CHH}$), 4.84 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.85$, CHH), $5.27(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $7.22-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)$ 23.34, 28.00 and $28.81\left(\mathrm{CH}_{3}\right), 37.45,41.66,44.14$ and 51.21 $\left(\mathrm{CH}_{2}\right), 101.71,127.78,128.32$ and $128.70(\mathrm{CH}), 33.94,44.46$, $117.90,135.63,173.32,173.43$ and $193.80(\mathrm{C}) ; \mathrm{m} / \mathrm{z} 325\left(\mathrm{M}^{+}\right)$.

1,2,3,3a,4,5,6,7,8,8a-D ecahydro-1,8-dibenzyl-3a,6,6-

trimethyl-2,4-dioxopyrrolo[2,3-b]indole 9a. Y ield 0.1 g (12\%); mp $176-177^{\circ} \mathrm{C}$ (Found: C, 77.94; H, 7.35; N, 6.84. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 78.23; $\mathrm{H}, 7.29 ; \mathrm{N}, 6.76 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1680 and $1620(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.07(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.03-2.17\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 2.56(1$ H, d, J 18.15, CH H), 3.19 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.15, \mathrm{CHH}$), 4.17 ($1 \mathrm{H}, \mathrm{d}$, J 16.49, CHH), 4.29 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.83$, CHH), 4.33 ($1 \mathrm{H}, \mathrm{d}$, J 16.49, CHH), 4.62 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$), 4.81 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.83, \mathrm{CHH}$), 6.96-7.31 (10 H, m, Ph $\times 2$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 24.20,28.22$ and 28.81 $\left(\mathrm{CH}_{3}\right), 36.29,41.41,44.65,49.37$ and $50.61\left(\mathrm{CH}_{2}\right), 86.39$, 126.43, 126.91, 127.56, 127.94, 128.75 and 128.94 (CH), 33.97, $44.49,115.34,136.06,136.52,163.16,174.72$ and 190.80 (C); $\mathrm{m} / \mathrm{z} 414\left(\mathrm{M}^{+}\right)$.

1,2,3,3a,4,5,6,7,8,8a-D ecahydro-6,6,8-trialkyl-3a-methyl-2,4-dioxopyrrolo[2,3-b]indoles 9b-9d

A solution of a furofuran $\mathbf{5}(2 \mathrm{mmol})$ in 28% aq. ammonia (10 ml) [in the case of compound $9 \mathrm{~d} 40 \%$ methylamine solution (10 ml) was used] was heated at $80^{\circ} \mathrm{C}$ for 12 h in a sealed tube. The solvent was evaporated off under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}=20: 1$).
Compound 9b: yield $0.26 \mathrm{~g}(52 \%)$; mp $251-253^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 63.72 ; \mathrm{H}, 6.66 ; \mathrm{N}, 13.40 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 64.06 ; \mathrm{H}$, $6.84 ; \mathrm{N}, 13.58 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3250(\mathrm{NH}), 1700$ and $1670(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.79-1.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.2.05-2.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $2.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.15, \mathrm{CHH})$, 2.30-2.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $2.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.15, \mathrm{CHH}$), 4.81 $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.98(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $8.21(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 24.07\left(\mathrm{CH}_{3}\right), 22.07,22.97,36.41$ and 41.46 $\left(\mathrm{CH}_{2}\right), 77.62(\mathrm{CH}), 46.83,113.69,165.82,175.96$ and 188.89 (C); m/z $206\left(\mathrm{M}^{+}\right)$.

Compound 9 C : yield $0.31 \mathrm{~g}(53 \%)$; mp $270-272{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1}$ $3150(\mathrm{NH}), 1700$ and $1690(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 0.96(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.91(1 \mathrm{H}$, d, J 15.83, CHH), 2.05 (1 H, d, J 15.83, CHH), 2.14 ($1 \mathrm{H}, \mathrm{d}$, J 16.83, CHH), $2.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.15, \mathrm{CHH}), 2.23(1 \mathrm{H}, \mathrm{d}$, J $16.83, \mathrm{CHH}), 2.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.15, \mathrm{CHH}), 4.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$, $7.94(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $8.21(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 23.74$, 27.49 and $28.71\left(\mathrm{CH}_{3}\right), 36.42,41.36$ and $50.62\left(\mathrm{CH}_{2}\right), 77.84$ (CH), 33.80, 46.73, 112.05, 164.53, 175.83 and 188.89 (C); m/z $234\left(\mathrm{M}^{+}\right)$[Found: (EI) M ${ }^{+}, 234.1385 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires M , 234.1368].

Compound 9d: yield $0.25 \mathrm{~g}(48 \%)$; mp $151-153^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 68.49 ; \mathrm{H}, 8.61 ; \mathrm{N}, 10.67 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.67$; $\mathrm{H}, 8.45 ; \mathrm{N}, 10.68 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1690$ and 1670 ($\mathrm{C}=0$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.42(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.13-2.21\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 2.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.83$, CH H) , 2.53 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.15, \mathrm{CH}$) , $2.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.12$ (3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $4.58(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$; $\delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 24.66,28.38$, 28.84, 29.00 and $33.29\left(\mathrm{CH}_{3}\right), 36.18,41.82$ and $50.37\left(\mathrm{CH}_{2}\right)$, 91.44 (CH), 33.70, 43.92, 114.29, 163.88, 174.54 and 190.10 (C); m/z $262\left(\mathrm{M}^{+}\right)$.

1,2,3,4,4a,5,6,7,8,9a-D ecahydro-7,7-dialkyl-2,4a-dimethyl-3,5-dioxobenzo[4,5]furo[2,3-c]pyridazine 10a and 10b

A solution of a lactone $\mathbf{5}(2 \mathrm{mmol})$ and methylhydrazine (0.11 $\mathrm{ml}, 2 \mathrm{mmol}$) in EtOH (10 ml) was refluxed for 12 h . The EtOH was then evaporated off under reduced pressure. The residue was purified by flash column chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{MeOH}=8: 1$).
Compound 10a: yield $0.32 \mathrm{~g}(68 \%)$; mp $162-164{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 61.20 ; \mathrm{H}, 7.07 ; \mathrm{N}, 11.91 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 61.00 ; \mathrm{H}$, $6.83 ; \mathrm{N}, 11.86 \%$); $v_{\max } / \mathrm{cm}^{-1} 3240(\mathrm{NH})$ and $1640(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.99-2.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.25-$ $2.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.51, \mathrm{CH} \mathrm{H}), 2.42-2.46$ (2 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.97 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.51, \mathrm{CHH}$), 3.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $5.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.98, \mathrm{CH})$ and $5.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.98, \mathrm{NH})$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 24.71$ and $36.10\left(\mathrm{CH}_{3}\right), 21.45,23.16,36.85$ and 38.47 $\left(\mathrm{CH}_{2}\right), 100.80(\mathrm{CH}), 47.35,116.04,171.68,176.34$ and 194.45 (C); m/z $236\left(\mathrm{M}^{+}\right)$.

Compound 10 b : yield $0.34 \mathrm{~g}(64 \%)$; mp $150-151^{\circ} \mathrm{C}$; $v_{\text {max }} /$ $\mathrm{cm}^{-1} 3210(\mathrm{NH}) 1660$ and $1640(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.05(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, 2.25 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.48, \mathrm{CHH}$), $2.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.48, \mathrm{CHH}), 2.38$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.51, \mathrm{CH}$) $, 2.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.51, \mathrm{CH} H), 3.05(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 5.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.98, \mathrm{CH})$ and $5.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.98, \mathrm{NH})$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 24.47,27.69,28.83$ and $36.08\left(\mathrm{CH}_{3}\right), 37.54,38.44$ and $51.18\left(\mathrm{CH}_{2}\right), 101.15(\mathrm{CH}), 34.08,47.36,114.71,171.76$, 175.26 and 193.66 (C); m/z $264\left(\mathrm{M}^{+}\right.$) [Found: (EI) M^{+}, 264.1477. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\left.\mathrm{M}, 264.1474\right]$.

Reaction of lactones 5 with hydrazines. G eneral procedure

A solution of a lactone $5(2 \mathrm{mmol})$ and hydrazine (10 mmol) in
$\mathrm{EtOH}(10 \mathrm{ml})$ was refluxed for 12 h . The EtOH was then evaporated off under reduced pressure, and the residue was treated with diethyl ether. The precipitated solid was filtered off, and recrystallized with EtOH .

1,2,3,4,4a,5,6,7,8,9a-D ecahydro-2,4a-dimethyl-9-methyl-

 amino-3,5-dioxopyridazino[3,4-b]indole 12a. Y ield $0.36 \mathrm{~g}(68 \%)$; mp 199-201 ${ }^{\circ} \mathrm{C}$ (Found: C, 58.90; H, 7.86; N, 21.04. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 59.07; H,7.63; $\mathrm{N}, 21.20 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 3280 and $3250(\mathrm{NH})$ and $1660(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.41(3 \mathrm{H}$, s, CH_{3}), 1.86-1.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.15-2.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.34-2.55 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ and CHH), $2.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.97$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $3.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.18, \mathrm{CHH}$), $4.29(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$), $4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.65, \mathrm{CH})$ and $5.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.65, \mathrm{NH})$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 24.69,35.48$ and $36.53\left(\mathrm{CH}_{3}\right), 21.83,36.83$ and 38.61 $\left(\mathrm{CH}_{2}\right), 80.08(\mathrm{CH}), 46.08,108.81,168.76,173.05$ and 190.99 (C); m/z $264\left(\mathrm{M}^{+}\right)$.
1,2,3,4,4a,5,6,7,8,9a-D ecahydro-9-amino-4a,7,7-trimethyl-

 3,5-dioxopyridazino[3,4-b]indole 12b. Y ield 0.26 g (52%); mp $251-253{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3300,3260,3210$ and $3140(\mathrm{NH}), 1660$ and $1640(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 0.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.98(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.84, \mathrm{CH} \mathrm{H}), 1.96(1 \mathrm{H}$, d, J 15.84, CHH), 2.24 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.15, \mathrm{CHH}$), 2.25 ($1 \mathrm{H}, \mathrm{d}$, J 13.52, CHH), 2.34 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.15, \mathrm{CHH}$), $2.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 13.52, CHH), $4.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.31, \mathrm{CH}), 4.36\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 5.88$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.31, \mathrm{NH}$) and $8.21(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 25.13$, 27.69 and $28.99\left(\mathrm{CH}_{3}\right), 35.27,38.28$ and $50.78\left(\mathrm{CH}_{2}\right), 86.21$ (CH), 33.19, 45.16, 106.16, 167.73, 174.90 and 187.52 (C); $\mathrm{m} / \mathrm{z} 264\left(\mathrm{M}^{+}\right)$[Found: (EI) M^{+}, 264.1567. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires M , 264.1586].1,2,3,4,4a,5,6,7,8,9a-D ecahydro-9-methylamino-2,4a,7,7-tetramethyl-3,5-dioxopyridazinol[3,4-b]indole 12c. Y ield 0.31 g (53\%); mp 215-217 ${ }^{\circ} \mathrm{C}$ (Found: C, 61.69; H, 8.55; N, 19.02. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 61.62; $\mathrm{H}, 8.27 ; \mathrm{N}, 19.16 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3260(\mathrm{NH}), 1660$ and $1640(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $0.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.84$, CHH), $1.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.84, \mathrm{CHH}), 2.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.15$, CHH), 2.33 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.15, \mathrm{CHH}$), 2.35 ($1 \mathrm{H}, \mathrm{d}$, J 13.52, CHH), $2.49\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.61, \mathrm{CH}_{3}\right), 2.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.52, \mathrm{CHH})$, $2.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.98, \mathrm{CH}), 4.88(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 5.61$, $\mathrm{NH})$ and $6.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.98, \mathrm{NH}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 24.55,26.95$, 29.09, 35.13 and $36.18\left(\mathrm{CH}_{3}\right), 34.89,38.18$ and $50.67\left(\mathrm{CH}_{2}\right)$, 80.54 (CH), 33.21, 45.41, 106.25, 166.98, 172.14 and 187.89 (C); $\mathrm{m} / \mathrm{z} 292\left(\mathrm{M}^{+}\right)$.
1,2,3,4,4a,5,6,7,8,9a-D ecahydro-9-anilino-4a,7,7-trimethyl-2-phenyl-3,5-dioxopyridazino[3,4-b]indole 12d. Yield 0.51 g (61\%); mp 235-236 ${ }^{\circ} \mathrm{C}$ (Found: C, 72.33; H, 6.84; N, 13.30. $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, $72.09 ; \mathrm{H}, 6.78 ; \mathrm{N}, 13.45 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 3320 and $3230(\mathrm{NH}), 1690$ and $1620(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.97$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.04-2.17$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 2.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.82, \mathrm{CHH}), 3.05(1 \mathrm{H}, \mathrm{d}$, J $17.82, \mathrm{CHH}), 4.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.29(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 6.44-6.56$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) , 6.77-6.84 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $6.91(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$ and 7.06-7.18 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)$ 24.19, 27.61 and 29.15 $\left(\mathrm{CH}_{3}\right), 35.10,39.94$ and $50.94\left(\mathrm{CH}_{2}\right), 83.72,112.67,113.36$, 121.18, 121.59 and 129.45 (CH), $42.39,111.53,145.25,145.86$, 166.18, 173.96 and 191.47 (C); m/z 416 (M^{+}).

Compound 12c from benzofuran 10b and methylhydrazine

A solution of compound $\mathbf{1 0 b}(0.53 \mathrm{~g}, 2 \mathrm{mmol})$ and methylhydrazine ($0.53 \mathrm{ml}, 10 \mathrm{mmol}$) in EtOH was refluxed for 12 h . The EtOH was evaporated off under reduced pressure and the resulting residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}=8: 1\right)$ to give compound 12 c in 67% yield. The product was identified by comparison of its spectra with the spectral data of an authentic sample of compound 12c.

2-A mino-3-cyano-4-dimethoxymethyl-4-methyl-5-oxo-4H,5H -pyrano[3,2-c]chromene 15

A solution of 4-hydroxycoumarin 14 ($1.62 \mathrm{~g}, 10 \mathrm{mmol}$), pyruvaldehyde dimethyl acetal $\mathbf{2 b}(1.21 \mathrm{ml}, 10 \mathrm{mmol})$, malononitrile

3 ($0.63 \mathrm{ml}, 10 \mathrm{mmol}$) and piperidine ($0.49 \mathrm{ml}, 5 \mathrm{mmol}$) in benzene (50 ml) was refluxed for 3 h using a D ean-Stark apparatus. The precipitated solid was collected, washed with EtOH and recrystallized from EtOH to give the title compound $\mathbf{1 5}$ (3.02 g , 92\%); mp 239-241 ${ }^{\circ} \mathrm{C}$ (Found: C, 62.33; H, 5.06; N, 8.21. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, 62.19; H, 4.91; $\left.\mathrm{N}, 8.53 \%\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ $2200(\mathrm{CN})$ and $1710(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.62(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.14(2$ $\mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}$), 7.44-7.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.70-7.76 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.88-7.92 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 21.77,56.96$ and $58.44\left(\mathrm{CH}_{3}\right), 108.36,116.21,122.68,124.60$ and $132.96(\mathrm{CH})$, $40.69,57.85,105.06,112.73,119.31,151.98,154.03,158.65$ and $159.32(\mathrm{C}) ; \mathrm{m} / \mathrm{z} 328\left(\mathrm{M}^{+}\right)$.

cis-6b,7,8,9a-Tetrahydro-6b-methyl-6,8-dioxofuro[$\left.3^{\prime}, \mathbf{2}^{\prime}: 4,5\right]$ furo[3,2-c]chromene 16

A suspension of nitrile $\mathbf{1 5}(0.66 \mathrm{~g}, 2 \mathrm{mmol})$ in $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{ml})$ was refluxed for 12 h . The precipitated solid was collected and recrystallized from EtOH to give title compound $16(0.40 \mathrm{~g}$, 77%); mp 193-194 ${ }^{\circ} \mathrm{C}$ (Found: C, 65.27; H, 4.04. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{5}$ requires $\mathrm{C}, 65.12 ; \mathrm{H}, 3.90 \%)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1800$ and $1715(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.14, \mathrm{CHH})$, 3.08 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.14, \mathrm{CHH}$), 6.64 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$), $7.40-7.52(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.71-7.77(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 20.48\left(\mathrm{CH}_{3}\right)$, $37.45\left(\mathrm{CH}_{2}\right), 112.94,116.75,122.74,124.57$ and $133.37(\mathrm{CH})$, 48.73, 107.79, 111.46, 154.60, 158.13, 162.88 and 173.46 (C) ; m/z 258 (M+).
cis-1,2,3,3a,4,6a-H exahydro-5-(2-hydroxyphenyl)-3a-methyl-2-oxopyrrolo[2,3-b]pyrrole 17
A suspension of lactone 16 ($0.52 \mathrm{~g}, 2 \mathrm{mmol}$) in 28% aq. ammonia (10 ml) was heated at $80^{\circ} \mathrm{C}$ in a sealed tube for 2 h . Then the precipitated solid was filtered off and recrystallized from EtOH to give title compound $17(0.29 \mathrm{~g}, 63 \%)$; mp $218-219^{\circ} \mathrm{C}$ (Found: C, 67.75; H, 6.23; $\mathrm{N}, 12.10 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C , $67.81 ; \mathrm{H}, 6.13 ; \mathrm{N}, 12.17 \%)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3180(\mathrm{OH}), 3090(\mathrm{NH})$ and $1690(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.14(1 \mathrm{H}, \mathrm{d}$, J 17.49, CH H), 2.40 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.49$, CHH), 3.02 ($1 \mathrm{H}, \mathrm{d}$, J $17.82, \mathrm{CHH}), 3.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.82, \mathrm{CHH}), 5.30(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$, 6.90-6.97 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.37-7.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $8.69(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH})$ and $13.26(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$; $\delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 24.74\left(\mathrm{CH}_{3}\right), 43.87$ and $48.08\left(\mathrm{CH}_{2}\right), 90.66,116.58,118.63,130.37$ and 133.26 (CH) , 41.77, 116.29, 160.29, 175.40 and 177.48 (C); m/z 230 $\left(\mathrm{M}^{+}\right)$.

cis-1,2,3,3a,6,6a-H exahydro-5-(2-hydroxyphenyl)-1,3a,6-trimethyl-4-methylcarbamoyl-2-oxopyrrolo [2,3-b]pyrrole 18

A suspension of lactone $16(0.52 \mathrm{~g}, 2 \mathrm{mmol})$ in 40% aq. methylamine (10 ml) was heated at $80^{\circ} \mathrm{C}$ in a sealed tube for 5 h . Water was evaporated off under reduced pressure and the resulting residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}=20: 1$) to give title compound $18(0.2 \mathrm{~g}, 32 \%)$; mp 195$197^{\circ} \mathrm{C}$ (Found: C, 65.03; H, 6.64; N, 13.41. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 64.74 ; \mathrm{H}, 6.71 ; \mathrm{N}, 13.32 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3450(\mathrm{NH})$, $3050(\mathrm{OH}), 1690$ and $1680(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.44(3 \mathrm{H}, \mathrm{s}$, CH_{3}), $2.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.49, \mathrm{CHH}), 2.39\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.62, \mathrm{CH}_{3}\right)$, $2.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.49, \mathrm{CHH}), 2.82(3 \mathrm{H}, \mathrm{s}$, CH_{3}), $4.64(1 \mathrm{H}, \mathrm{s}, \mathrm{N}$ CHN $), 5.30(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 6.90-7.49(4 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$ and $9.90(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; $\delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 22.15,25.57$, 27.41 and $34.82\left(\mathrm{CH}_{3}\right), 42.18\left(\mathrm{CH}_{2}\right), 88.73,116.42,119.52$, 130.47 and 131.12 (CH), $47.52,110.92,118.09,149.52,155.02$, 165.21 and $172.82(\mathrm{C})$; m/z $315\left(\mathrm{M}^{+}\right)$.

References

1 Part of this work was reported in a preliminary communication. Y. Okamoto, T. Okawara and M. Furukawa, H eterocycles, 1996, 43, 2353.

2 S. Takano and K. Ogasawara, in The Alkaloids, ed. A. Brossi, A cademic Press, N ew York, 1989, vol. 36, pp. 224-251.
3 U. A xelsson, A cta O phthalmol., Suppl., 1969, 102, 1; M . B. Walker, L ancet, 1934, 226, 1200.

4 cf. S. A. Beller, J. E. Overall and A. C. Swann, P sychopharmacology 1987, 87, 145.
5 Q. S. Yu and B.-Y. L u, H eterocycles, 1994, 39, 519 and references cited therein; P. F. Santos, A. M. Lobo and S. Prabhakar, Tetrahedron L ett., 1995, 36, 8099; X .-F. Pei and A. Brossi, H eterocycles, 1995, 41, 2823; M. N ode, X.-J. Hao, K . N ishide and K. Fuji, Chem. Pharm. Bull., 1996, 44, 715.
6 F. F. A bdel-L atif, M. M. M ashaly and E. H. El-G awish, J. Chem. Res. (S), 1995, 178.
7 T. Okawara, K. Uchiyama, Y. Okamoto, T. Yamasaki and M. Furukawa, J. Chem. Soc., Chem. Commun., 1990, 1385;
T. Okawara, S. Ehara, S. M atsumoto, Y. Okamoto and
M. Furukawa, J. Chem. Soc., Perkin Trans. 1, 1990, 2615; T. Okawara, S. Ehara, M. Eto, K. Harano and M. Furukawa, Tetrahedron Lett., 1993, 34, 4231; T. Okawara, S. Ehara, H. K agotani, Y. Okamoto, M. Eto, K. Harano, T. Yamasaki and M . F urukawa, J. Org. C hem., 1996, 61, 4125.
8 J. P. M arino, S. Bogdan and K. K imura, J. Am. Chem. Soc., 1992, 114, 5566.

Paper 6/07816H
Received 18th N ovember 1996 A ccepted 7th J anuary 1997

